MATH 3060 Tutorial 11

Chan Ki Fung

November 23, 2022

- 1. Let $\{f_n : \mathbb{C} \to \mathbb{C}\}\$ be a sequence of functions, and let U be a bounded open subset of \mathbb{C} .
 - (a) Assume U is a disc and suppose $\{f_n\}$ and partial derivatives of f are uniformly bounded on U, show that $\{f_n\}$ is precompact.
 - (b) Suppose $\{f_n\}$ is uniformly bounded on U and each f_n is holomorphic, show that there exists a subsequence f_{n_k} with converges pointwise to a continuous function, show that the convergence is uniform on every compact subset of U.
- 2. Prove that the dimension of a Banach space is either finite or uncountable.
- 3. Let $X = (C[0, 2\pi], || \cdot ||_{\infty})$, it is a Banach space. Let $F_n : X \to \mathbb{C}$ be

$$F_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \frac{\sin(n + \frac{1}{2})x}{\sin\frac{1}{2}x} dx.$$

(a) For each $n \in \mathbb{Z}_+$, show that there exists an $f \in X$ with

$$\frac{1}{2\pi} \int |f| = 1, \ F_n(f) > \frac{2}{\pi^2} \sum_{k < n} \frac{1}{k}.$$

- (b) Using Baire category theorem, show that there exists an $f \in X$ whose Fourier series diverges at the point 0.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function such that for each $x \in \mathbb{R}$, there exists some $n \in \mathbb{Z}_+$ with $f^{(n)}(x) = 0$. Show that f is a polynomial. See here for a solution.